If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+73x+75=0
a = 10; b = 73; c = +75;
Δ = b2-4ac
Δ = 732-4·10·75
Δ = 2329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(73)-\sqrt{2329}}{2*10}=\frac{-73-\sqrt{2329}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(73)+\sqrt{2329}}{2*10}=\frac{-73+\sqrt{2329}}{20} $
| -5(x-2)+4(6-x)=x-6 | | 12a+6=3-4a | | 4+2d-5d+2=30 | | 8b(b+8)-6b=8 | | 6x+44+10x+65=117 | | 4-4=15x+2x | | 1+5c=100c | | (2i)/(1+i)=0 | | (5/8)x-3=(1/2) | | 2x+8=3x+24 | | 101-x=180 | | 12x-20=12x+18 | | 55+35x=160 | | 214-27x-11=15x-49 | | 3x−6=7x+1 | | 4=3x-12 | | 9y+16=3-4y | | 2k+3•(k+4)=-3 | | 3=-1/6(-1)+b | | 8u^2=-7 | | -2(x-2)+3(4-x)=4x-11 | | 5t+6=7 | | 5+n=9n-8(n+9) | | -111=3(7x-2) | | 7-b=42 | | 6w-33=3(4w+5) | | 15=6a-15-3a | | 25t=5(5t/1) | | 2.4+3x=0.6 | | -x-21=17-3x | | p2+ 2=3 | | 3=3(x-9) |